13. 五个简单但是数学家不能解决的问题(4):内接正方形问题大老李聊数学(全集)

13. 五个简单但是数学家不能解决的问题(4):内接正方形问题

21分钟 ·
播放数95
·
评论数0

        请你在纸上任意画一条封闭曲线,形状不论,只要是是封闭,凹凸也不论。不可有自相交。然后请你设法在曲线里画一个内接正方形,也就是正方形四个顶点都在曲线上。你可能稍微实验几下,就能画出。需说明允许这个正方形超出这个闭曲线之外,否则有反例。

1911年德国犹太裔数学家Otto Toeplitz提出。

正式描述:

Let C be a Jordan curve. A polygon P is inscribed in C if all vertices of P belong to C. The inscribed square problem asks:

Does every Jordan curve admit an inscribed square?



以下是科赫雪花曲线的前四步构造过程,它被证明符合内接正方形猜想: