本期的 17 篇论文如下:
00:28 📄 HelloBench: Evaluating Long Text Generation Capabilities of Large Language Models(HelloBench:评估大型语言模型的长文本生成能力)
01:14 🌐 Making Text Embedders Few-Shot Learners(利用大语言模型使多语言文本嵌入器成为少样本学习者)
01:51 🌐 OmniBench: Towards The Future of Universal Omni-Language Models(OmniBench:迈向通用全能语言模型的未来)
02:29 🔄 Present and Future Generalization of Synthetic Image Detectors(合成图像检测器的现状与未来泛化)
03:08 🎥 MIMO: Controllable Character Video Synthesis with Spatial Decomposed Modeling(MIMO:基于空间分解建模的可控角色视频合成)
03:43 🔄 MonoFormer: One Transformer for Both Diffusion and Autoregression(MonoFormer:一个Transformer同时处理扩散和自回归)
04:16 🌍 EuroLLM: Multilingual Language Models for Europe(欧洲多语言模型:EuroLLM)
04:53 🖼 MaskBit: Embedding-free Image Generation via Bit Tokens(MaskBit: 通过比特令牌实现无嵌入图像生成)
05:33 👁 Seeing Faces in Things: A Model and Dataset for Pareidolia(事物中的面孔:幻觉模型与数据集)
06:19 🤖 Gen2Act: Human Video Generation in Novel Scenarios enables Generalizable Robot Manipulation(Gen2Act:在新场景中生成人类视频以实现可泛化的机器人操作)
06:57 🎨 Improvements to SDXL in NovelAI Diffusion V3(NovelAI Diffusion V3中SDXL的改进)
07:41 🔄 Reward-Robust RLHF in LLMs(大语言模型中的奖励鲁棒RLHF)
08:16 🤖 DynaMo: In-Domain Dynamics Pretraining for Visuo-Motor Control(DynaMo:视觉运动控制的域内动力学预训练)
08:54 🇮 SLIMER-IT: Zero-Shot NER on Italian Language(SLIMER-IT:意大利语零样本命名实体识别)
09:33 📈 Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts(基于专家混合的十亿级时间序列基础模型)
10:17 🛡 RRM: Robust Reward Model Training Mitigates Reward Hacking(RRM:鲁棒奖励模型训练缓解奖励作弊)
10:50 📊 Tabular Data Generation using Binary Diffusion(使用二进制扩散生成表格数据)

【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递