2024.10.11 每日AI论文 | 数学代码提升推理,前缀量化加速模型

2024.10.11 每日AI论文 | 数学代码提升推理,前缀量化加速模型

15分钟 ·
播放数114
·
评论数0

本期的 21 篇论文如下:

00:25 🧮 MathCoder2: Better Math Reasoning from Continued Pretraining on Model-translated Mathematical Code(MathCoder2:通过模型翻译的数学代码进行持续预训练以提升数学推理能力)

01:09 🚀 PrefixQuant: Static Quantization Beats Dynamic through Prefixed Outliers in LLMs(前缀量化:静态量化通过LLMs中的前缀异常值超越动态量化)

01:59 🤖 MLLM as Retriever: Interactively Learning Multimodal Retrieval for Embodied Agents(MLLM作为检索器:交互式学习多模态检索以增强具身代理)

02:33 🎨 DICE: Discrete Inversion Enabling Controllable Editing for Multinomial Diffusion and Masked Generative Models(DICE:离散逆向可控编辑的多项扩散与掩码生成模型)

03:03 🔄 Benchmarking Agentic Workflow Generation(代理工作流生成基准测试)

03:44 🤖 Agent S: An Open Agentic Framework that Uses Computers Like a Human(Agent S:一个使用计算机如人类的开放代理框架)

04:23 🔄 Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow(修正扩散:在修正流中直线性并非必需)

04:55 🤖 Intriguing Properties of Large Language and Vision Models(大型语言与视觉模型的引人特性)

05:35 🎥 Progressive Autoregressive Video Diffusion Models(渐进式自回归视频扩散模型)

06:26 🌲 Towards Self-Improvement of LLMs via MCTS: Leveraging Stepwise Knowledge with Curriculum Preference Learning(基于MCTS的LLMs自我改进:利用逐步知识与课程偏好学习)

07:10 🌐 Preserving Multi-Modal Capabilities of Pre-trained VLMs for Improving Vision-Linguistic Compositionality(保留预训练视觉语言模型的多模态能力以提升视觉语言组合性)

07:50 🤖 GLOV: Guided Large Language Models as Implicit Optimizers for Vision Language Models(GLOV:引导大型语言模型作为视觉语言模型的隐式优化器)

08:36 🧩 SFTMix: Elevating Language Model Instruction Tuning with Mixup Recipe(SFTMix:利用Mixup方法提升语言模型指令微调)

09:15 🔄 Emergent properties with repeated examples(重复示例的涌现特性)

09:57 🤖 Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System(优化基于LLM的多智能体系统的有效性与效率)

10:40 🎲 Cheating Automatic LLM Benchmarks: Null Models Achieve High Win Rates(欺骗自动LLM基准测试:空模型实现高胜率)

11:14 🌐 Everything Everywhere All at Once: LLMs can In-Context Learn Multiple Tasks in Superposition(无处不在同时进行:LLMs 可以在叠加状态下进行多任务上下文学习)

11:58 🧬 LPZero: Language Model Zero-cost Proxy Search from Zero(LPZero:从零开始的零成本代理搜索)

12:41 🌐 MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting(MotionGS:探索显式运动引导的可变形3D高斯喷射)

13:15 🔍 Scaling Up Your Kernels: Large Kernel Design in ConvNets towards Universal Representations(扩展你的卷积核:大卷积核设计在卷积神经网络中的通用表示)

13:51 🖼 DART: Denoising Autoregressive Transformer for Scalable Text-to-Image Generation(DART:去噪自回归Transformer用于可扩展的文本到图像生成)

【关注我们】

您还可以在以下平台找到我们,获得播客内容以外更多信息

小红书: AI速递