本期的 20 篇论文如下:
00:26 🤔 The Differences Between Direct Alignment Algorithms are a Blur(直接对齐算法的差异逐渐模糊)
01:07 🤖 OmniHuman-1: Rethinking the Scaling-Up of One-Stage Conditioned Human Animation Models(OmniHuman-1:重新思考单阶段条件式人体动画模型的放大)
01:48 💡 Process Reinforcement through Implicit Rewards(基于隐式奖励的过程强化)
02:36 ⚖ Preference Leakage: A Contamination Problem in LLM-as-a-judge(偏好泄露:LLM即评判器中的污染问题)
03:14 🛡 SafeRAG: Benchmarking Security in Retrieval-Augmented Generation of Large Language Model(SafeRAG:评估大语言模型检索增强生成中的安全性)
04:02 🚀 FastKV: KV Cache Compression for Fast Long-Context Processing with Token-Selective Propagation(FastKV:通过令牌选择性传播实现快速长文本处理的KV缓存压缩)
04:50 🌍 AIN: The Arabic INclusive Large Multimodal Model(AIN:阿拉伯语包容性大型多模态模型)
05:39 🧠 DeepRAG: Thinking to Retrieval Step by Step for Large Language Models(DeepRAG:面向大型语言模型的逐步思考检索)
06:30 🤔 MM-IQ: Benchmarking Human-Like Abstraction and Reasoning in Multimodal Models(MM-IQ:多模态模型中类人抽象与推理能力的基准测试)
07:19 🛡 Almost Surely Safe Alignment of Large Language Models at Inference-Time(大语言模型在推理时近乎完全安全的对齐)
08:04 🤔 ZebraLogic: On the Scaling Limits of LLMs for Logical Reasoning(ZebraLogic:关于大型语言模型在逻辑推理中的扩展极限)
08:49 🤔 The Jumping Reasoning Curve? Tracking the Evolution of Reasoning Performance in GPT-[n] and o-[n] Models on Multimodal Puzzles(跳跃的推理曲线?追踪GPT-[n]和o-[n]模型在多模态谜题上的推理性能演变)
09:38 🎮 Improving Transformer World Models for Data-Efficient RL(改进Transformer世界模型以实现数据高效的强化学习)
10:22 💡 Improved Training Technique for Latent Consistency Models(改进的潜在一致性模型训练技术)
11:07 🧠 Scaling Embedding Layers in Language Models(语言模型中扩展嵌入层)
11:42 🎨 SliderSpace: Decomposing the Visual Capabilities of Diffusion Models(SliderSpace:解构扩散模型的视觉能力)
12:24 🤔 PhD Knowledge Not Required: A Reasoning Challenge for Large Language Models(无需博士知识:大型语言模型的推理挑战)
13:08 🧠 Lifelong Sequential Knowledge Editing without Model Degradation(终身序列知识编辑,且不降低模型性能)
13:46 🔬 Current Pathology Foundation Models are unrobust to Medical Center Differences(当前病理学基础模型对于医疗中心差异不具有鲁棒性)
14:37 🫀 A Study on the Performance of U-Net Modifications in Retroperitoneal Tumor Segmentation(U-Net改进模型在腹膜后肿瘤分割中的性能研究)

【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递