本期的 21 篇论文如下:
00:24 🔄 Analyze Feature Flow to Enhance Interpretation and Steering in Language Models(分析特征流以增强语言模型的解释与控制)
01:03 🤖 UltraIF: Advancing Instruction Following from the Wild(超IF:从野外推进指令跟随)
01:40 🎥 DynVFX: Augmenting Real Videos with Dynamic Content(DynVFX:用动态内容增强真实视频)
02:16 🌐 Ola: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment(Ola:通过渐进式模态对齐推动全模态语言模型的前沿)
02:51 🏃 MotionLab: Unified Human Motion Generation and Editing via the Motion-Condition-Motion Paradigm(MotionLab:基于运动-条件-运动范式的统一人体运动生成与编辑)
03:31 🤖 Great Models Think Alike and this Undermines AI Oversight(伟大的模型思维相似,这削弱了AI监督)
04:07 📚 MAGA: MAssive Genre-Audience Reformulation to Pretraining Corpus Expansion(MAGA:大规模体裁-受众重构以扩展预训练语料库)
04:47 🏆 Gold-medalist Performance in Solving Olympiad Geometry with AlphaGeometry2(在解决奥林匹克几何问题中实现金牌选手水平的AlphaGeometry2)
05:25 🤖 ScoreFlow: Mastering LLM Agent Workflows via Score-based Preference Optimization(ScoreFlow:基于评分偏好优化的LLM代理工作流掌握)
06:07 🎙 Llasa: Scaling Train-Time and Inference-Time Compute for Llama-based Speech Synthesis(Llasa:扩展基于Llama的语音合成中的训练和推理计算)
06:51 🎥 MotionCanvas: Cinematic Shot Design with Controllable Image-to-Video Generation(MotionCanvas:基于可控图像到视频生成的电影镜头设计)
07:38 📊 ChartCitor: Multi-Agent Framework for Fine-Grained Chart Visual Attribution(ChartCitor:细粒度图表视觉归属的多代理框架)
08:18 🧠 BOLT: Bootstrap Long Chain-of-Thought in Language Models without Distillation(BOLT:无需蒸馏的大语言模型长链思维自举)
09:01 🔄 Beyond Prompt Content: Enhancing LLM Performance via Content-Format Integrated Prompt Optimization(超越提示内容:通过内容-格式集成提示优化提升大语言模型性能)
09:45 🌀 Weak-to-Strong Diffusion with Reflection(从弱到强扩散与反射)
10:26 🤖 PlotGen: Multi-Agent LLM-based Scientific Data Visualization via Multimodal Feedback(PlotGen:基于多智能体LLM的科学数据可视化通过多模态反馈)
11:04 🔧 Enhancing Code Generation for Low-Resource Languages: No Silver Bullet(提升低资源语言的代码生成:没有银弹)
11:48 🔓 Speak Easy: Eliciting Harmful Jailbreaks from LLMs with Simple Interactions(轻松对话:通过简单互动从LLM中引出有害越狱行为)
12:22 🤖 PILAF: Optimal Human Preference Sampling for Reward Modeling(PILAF:最优人类偏好采样用于奖励建模)
13:05 🎥 Towards Physical Understanding in Video Generation: A 3D Point Regularization Approach(面向视频生成的物理理解:一种3D点正则化方法)
13:47 🤖 Learning Real-World Action-Video Dynamics with Heterogeneous Masked Autoregression(基于异质掩码自回归的现实世界动作视频动态学习)

【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递