本期的 18 篇论文如下:
00:21 🚀 MPO: Boosting LLM Agents with Meta Plan Optimization(MPO:通过元计划优化提升LLM代理)
00:59 🤖 Mask-DPO: Generalizable Fine-grained Factuality Alignment of LLMs(Mask-DPO:大语言模型的可泛化细粒度事实性对齐)
01:43 🧩 LADDER: Self-Improving LLMs Through Recursive Problem Decomposition(LADDER:通过递归问题分解实现自我改进的LLMs)
02:26 📚 Wikipedia in the Era of LLMs: Evolution and Risks(大语言模型时代的维基百科:演变与风险)
03:06 🚀 PipeOffload: Improving Scalability of Pipeline Parallelism with Memory Optimization(PipeOffload:通过内存优化提升流水线并行的可扩展性)
03:50 🔄 Iterative Value Function Optimization for Guided Decoding(迭代价值函数优化指导解码)
04:33 🤖 MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents(多智能体基准:评估LLM智能体的协作与竞争)
05:19 ⚡ FR-Spec: Accelerating Large-Vocabulary Language Models via Frequency-Ranked Speculative Sampling(FR-Spec:通过频率排序的推测采样加速大词汇量语言模型)
05:58 🧐 SemViQA: A Semantic Question Answering System for Vietnamese Information Fact-Checking(SemViQA:越南信息事实核查的语义问答系统)
06:45 🖼 RectifiedHR: Enable Efficient High-Resolution Image Generation via Energy Rectification(RectifiedHR:通过能量校正实现高效的高分辨率图像生成)
07:18 🌐 UFO: A Unified Approach to Fine-grained Visual Perception via Open-ended Language Interface(UFO:通过开放式语言接口实现细粒度视觉感知统一方法)
07:56 🧠 ATLaS: Agent Tuning via Learning Critical Steps(通过学习关键步骤进行代理调优)
08:41 🤖 Language Models can Self-Improve at State-Value Estimation for Better Search(语言模型能够在状态值估计中自我改进以提升搜索效果)
09:24 🔧 IterPref: Focal Preference Learning for Code Generation via Iterative Debugging(迭代调试优化的代码生成偏好学习)
10:15 🔬 SPIDER: A Comprehensive Multi-Organ Supervised Pathology Dataset and Baseline Models(SPIDER:综合多器官监督病理数据集与基线模型)
10:56 🌐 Improve Representation for Imbalanced Regression through Geometric Constraints(通过几何约束改进不平衡回归的表示)
11:35 🎯 Q-Eval-100K: Evaluating Visual Quality and Alignment Level for Text-to-Vision Content(Q-Eval-100K:评估文本到视觉内容的质量与对齐水平)
12:16 🤖 AppAgentX: Evolving GUI Agents as Proficient Smartphone Users(AppAgentX:演进出熟练使用智能手机的图形用户界面代理)

【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递