2025.04.16 | Genius提升LLM推理能力;xVerify高效验证推理模型。

2025.04.16 | Genius提升LLM推理能力;xVerify高效验证推理模型。

12分钟 ·
播放数177
·
评论数0

本期的 15 篇论文如下:

00:22 🧠 Genius: A Generalizable and Purely Unsupervised Self-Training Framework For Advanced Reasoning(Genius:一种用于高级推理的通用且纯粹的无监督自训练框架)

01:06 ✅ xVerify: Efficient Answer Verifier for Reasoning Model Evaluations(xVerify:用于推理模型评估的高效答案验证器)

01:52 🖼 Pixel-SAIL: Single Transformer For Pixel-Grounded Understanding(Pixel-SAIL:用于像素级理解的单Transformer)

02:37 ✅ Heimdall: test-time scaling on the generative verification(海姆达尔:生成式验证的测试时扩展)

03:23 🎨 Seedream 3.0 Technical Report(Seedream 3.0 技术报告)

04:07 📊 How Instruction and Reasoning Data shape Post-Training: Data Quality through the Lens of Layer-wise Gradients(指令和推理数据如何塑造后训练:基于层级梯度的数据质量分析)

04:54 🎮 TextArena(文本竞技场:用于大型语言模型中智能行为训练与评估的竞争性文本游戏集合)

05:43 🧠 The Scalability of Simplicity: Empirical Analysis of Vision-Language Learning with a Single Transformer(简单性的可扩展性:使用单一Transformer的视觉-语言学习的实证分析)

06:22 🤖 Efficient Process Reward Model Training via Active Learning(基于主动学习的高效过程奖励模型训练)

07:01 🚀 Efficient Generative Model Training via Embedded Representation Warmup(基于嵌入表示预热的高效生成模型训练)

07:43 🎥 NormalCrafter: Learning Temporally Consistent Normals from Video Diffusion Priors(NormalCrafter: 从视频扩散先验中学习时序一致的法线)

08:23 🧠 A Minimalist Approach to LLM Reasoning: from Rejection Sampling to Reinforce(LLM推理的极简方法:从拒绝采样到强化学习)

09:00 🧮 DeepMath-103K: A Large-Scale, Challenging, Decontaminated, and Verifiable Mathematical Dataset for Advancing Reasoning(DeepMath-103K:一个大规模、具有挑战性、经过净化且可验证的数学数据集,用于推进推理研究)

09:43 🚗 Diffusion Distillation With Direct Preference Optimization For Efficient 3D LiDAR Scene Completion(基于直接偏好优化的扩散蒸馏,用于高效3D激光雷达场景补全)

10:25 📹 PVUW 2025 Challenge Report: Advances in Pixel-level Understanding of Complex Videos in the Wild(PVUW 2025 挑战报告:复杂自然视频像素级理解进展)

【关注我们】

您还可以在以下平台找到我们,获得播客内容以外更多信息

小红书: AI速递