2025.04.24 | 视觉推理评估新基准;高保真人脸替换技术

2025.04.24 | 视觉推理评估新基准;高保真人脸替换技术

10分钟 ·
播放数115
·
评论数0

本期的 14 篇论文如下:

00:23 👁 VisuLogic: A Benchmark for Evaluating Visual Reasoning in Multi-modal Large Language Models(VisuLogic:一个用于评估多模态大型语言模型中视觉推理能力的基准)

01:08 🎭 DreamID: High-Fidelity and Fast diffusion-based Face Swapping via Triplet ID Group Learning(DreamID:基于Triplet ID Group Learning的高保真快速扩散人脸替换)

01:46 🌐 Trillion 7B Technical Report(Trillion-7B 技术报告)

02:30 💡 Pre-DPO: Improving Data Utilization in Direct Preference Optimization Using a Guiding Reference Model(Pre-DPO:利用引导参考模型提升直接偏好优化中的数据利用率)

03:11 🧩 I-Con: A Unifying Framework for Representation Learning(I-Con:一种统一的表征学习框架)

03:50 🧩 Decoupled Global-Local Alignment for Improving Compositional Understanding(解耦的全局-局部对齐以提升组合理解能力)

04:30 🎨 DreamO: A Unified Framework for Image Customization(DreamO:图像定制的统一框架)

05:12 💡 Tina: Tiny Reasoning Models via LoRA(蒂娜:基于LoRA的小型推理模型)

05:49 🛡 A Comprehensive Survey in LLM(-Agent) Full Stack Safety: Data, Training and Deployment(LLM(-Agent) 全栈安全综合研究:数据、训练与部署)

06:30 🧐 RePOPE: Impact of Annotation Errors on the POPE Benchmark(RePOPE:标注错误对POPE基准的影响)

07:06 💡 Rethinking the Generation of High-Quality CoT Data from the Perspective of LLM-Adaptive Question Difficulty Grading(重新思考:基于LLM自适应问题难度分级的优质CoT数据生成)

07:46 🛠 CRUST-Bench: A Comprehensive Benchmark for C-to-safe-Rust Transpilation(CRUST-Bench:C到安全Rust转译的综合基准)

08:29 ✅ Unchecked and Overlooked: Addressing the Checkbox Blind Spot in Large Language Models with CheckboxQA(未被检查与忽视:用 CheckboxQA 数据集解决大语言模型中的复选框盲点)

09:21 🖼 Progressive Language-guided Visual Learning for Multi-Task Visual Grounding(多任务视觉定位的渐进式语言引导视觉学习)

【关注我们】

您还可以在以下平台找到我们,获得播客内容以外更多信息

小红书: AI速递