Seventy3:借助NotebookLM的能力进行论文解读,专注人工智能、大模型、机器人算法方向,让大家跟着AI一起进步。
进群添加小助手微信:seventy3_podcast
备注:小宇宙
今天的主题是:
Self-Taught Agentic Long Context Understanding
Summary
The provided research paper introduces AgenticLU, a framework designed to improve how large language models understand and answer complex questions within long texts. This is achieved through a process called Chain-of-Clarifications (CoC), where the model asks itself clarifying questions and retrieves relevant context to enhance its comprehension. The framework trains the model using these self-generated reasoning paths to perform this clarification and retrieval efficiently in a single inference pass. Experimental results demonstrate that AgenticLU significantly outperforms existing methods on various long-context tasks by effectively utilizing information across extended inputs.
研究论文介绍了AgenticLU,一种旨在提升大型语言模型理解和回答长文本中复杂问题的框架。该框架通过“澄清链”(CoC)实现这一目标,即模型通过自问澄清问题并检索相关上下文来增强理解能力。该框架利用这些自生成的推理路径训练模型,使其在单次推理中高效执行澄清和检索。实验结果表明,AgenticLU在多种长上下文任务中显著优于现有方法,通过有效利用扩展输入中的信息。
原文链接:www.arxiv.org