00:01:29 AI的“人设”:谷歌“腹黑”,OpenAI“傻白甜”?
00:06:09 给AI“减肥餐”:为什么数据越多,模型可能越笨?
00:10:32 AI训练场上的新策略:先当“神算子”,再做“阅读家”
00:14:53 功劳簿到底该怎么写?
今天介绍的四篇论文:
[LG] Strategic Intelligence in Large Language Models: Evidence from evolutionary Game Theory
K Payne, B Alloui-Cros
[King’s College London & University of Oxford]
---
[LG] Data Uniformity Improves Training Efficiency and More, with a Convergence Framework Beyond the NTK Regime
Y Wang, S Gu
[Johns Hopkins University & UC Berkeley]
---
[CL] Should We Still Pretrain Encoders with Masked Language Modeling?
H Gisserot-Boukhlef, N Boizard, M Faysse, D M. Alves...
[Artefact Research Center & Diabolocom & Illuin Technology]
---
[LG] Disentangled Feature Importance
J Du, K Roeder, L Wasserman
[CMU]