[人人能懂AI前沿] AI的“减法”智慧:少即是多,盲目亦是祝福

[人人能懂AI前沿] AI的“减法”智慧:少即是多,盲目亦是祝福

30分钟 ·
播放数150
·
评论数0

今天我们要聊一个特别有意思的话题:如何“看透”AI并让它变得更好?我们将通过几篇最新论文,揭示一些反常识的智慧:比如,有时让AI“盲目”一点,它反而画得更好;想让它变聪明,关键可能不是“教”得多,而是“教”得巧。我们还会看到,攻击AI的最高境界,可能不是塞给它坏东西,而是对好东西做一次肉眼看不见的“微创手术”!

00:00:31 AI“投毒”新姿势,不是塞坏东西,而是让好人变坏

00:07:00 让AI变聪明的秘密,不是加法,是减法

00:11:29 AI的瘦身难题,如何高效地“抓重点”?

00:17:14 AI的“思想慢镜头”,我们如何看懂它在想什么?

00:22:54 AI绘画新思路,有时候,少即是多

本期介绍的几篇论文:

[LG] Infusion: Shaping Model Behavior by Editing Training Data via Influence Functions

[University of Oxford & UCL]

arxiv.org

---

[CL] Effective Reasoning Chains Reduce Intrinsic Dimensionality

[Google DeepMind & UNC Chapel Hill]

arxiv.org

---

[LG] WildCat: Near-Linear Attention in Theory and Practice

[Imperial College London & Microsoft Research]

arxiv.org

---

[LG] Step-resolved data attribution for looped transformers

[University of Potsdam & Technical University of Munich & MunichHarvard University]

arxiv.org

---

[LG] Blind denoising diffusion models and the blessings of dimensionality

[Simons Foundation & Yale University]

arxiv.org