- 98: 李开复聊零一部分团队并入阿里:只有大厂能追逐超大模型
「不再追求 AGI,他第一个讲了出来」 上周初开始,市场陆续出现有关零一万物的新调整传闻,关键词包括:“放弃预训练,资金链紧张、被阿里收购……”传闻出现的第二天,我们在零一万物办公地,中关村鼎好大厦,采访了李开复。 他解释了实际发生的变化:零一万物已经和阿里云成立了 “产业大模型联合实验室”,零一万物的大部分训练和 AI Infra 团队会加入这个实验室,成为阿里的员工,侧重超大模型研发。零一自己接下来会聚焦做更快、更便宜、更小,更能支持普惠应用的模型,同时自己做应用。 在李开复的描述里,超大模型和更快、更便宜、更小的模型的关系类似于“老师和学生”,超大模型可以通过标注结果和生成更多合成数据的方式帮更小的模型提升性能。 去年 5 月,我们也访谈过一次李开复,当时的话题是从中国“最年长的 AI 大模型创业者”开始的,在 2023 年创立零一万物时,李开复已经 62 岁。 和他行业地位还有人生阶段相似的人,更多会选择支持一个公司,而李开复这次是自己当 CEO,自己跳入了这场大模型的混战。 关于零一的新选择,有人认为是理性、务实,有人认为是收缩乃至“认输”。不管如何,在最新传闻后,李开复快速对外说明事实和阐释想法的姿态,展现了 CEO 的责任。当公司出现调整,CEO 是需要对内对外说明情况的人。 这次我又问了去年问过李开复的一个问题:功成名就时再来创业,会不会有心理包袱? 他的回答还是和上次相似。1983 年,李开复开始在卡耐基梅隆读计算机博士,当时他在研究计划里写:“AI 是人类认识并理解自己的最后一里路,我希望加入到这个全新绽放、充满前景的未来科学领域。” 李开复认为,这是他等了四十多年终于等到的 AI 时代,如果自己没有试一把,才是一个终身遗憾。 我们访谈李开复的两篇文字报道,我也贴在了 shownotes 的“相关链接”部分,感兴趣的听友可以阅读。 时间线跳转: 回应零一万物调整:“不会停止预训练,但不再追逐超大模型” 02:30 零一与阿里云成立“产业大模型联合实验室”,零一部分团队并入阿里 06:01 当开源追上闭源,任何公司没必要执着于自己预训练,但这件事现在还没发生 08:16 零一没有寻求过被收购 Scaling Law 在变慢;商业化灵魂拷问时刻已经到来 12:08 2024 年 5 月后,零一就做出抉择:聚焦更快、更便宜的模型;想做最大、最棒、最牛的模型,代价非常高,绝对不是一个初创公司可以做的事。 16:57 超大模型的作用是当 Teacher Model,提升较小模型的能力,Anthropic 和 OpenAI 都有类似实践 22:22 大模型时代,从技术竞争到商业落地拷问,一切在加快 25:13 不打打不赢的仗,不做看不到回报的大量投入 27:25 3 种 ToB 订单可以做:帮客户赚钱的;与行业客户紧密合作的;方案可复制性高的 “2025 年零一会有数亿收入”,怎么来? 33:32 2024 年获得超 1 亿元人民币实际收入 35:03 2025 年会和适合大模型的行业公司建合资公司,结合行业数据、Know-how 和零一的技术 中国大模型创业公司会全军覆没吗?——“没有任何概率” 38:26 谈团队变化:有人禁不住诱惑,有人想追寻超大模型 40:19 中国大模型创业公司全军覆没有多大概率?——“没有任何概率”,因为 AI-first 的应用会足够颠覆 44:01 AI-first 应用的特性:自然语言交互;有通用推理、理解能力;无 AI 不成立 45:11 中国大模型创业公司在应用和落地上会有更多优势,这是互联网和移动互联网验证过的逻辑。 “等了 40 多年,不试才是遗憾” 47:28 不后悔自己当 CEO,一线创业 49:43 2025 年,应用会爆发,零一会在垂直细分行业找到有大价值的 PMF 51:19 工作是工业革命留下的魔咒,如果有了 Super Agent,我会花更多时间和爱的人在一起,这是 AI 取代不了的。 52:45 “每一位都是勇士,我们应该彼此鼓励” 53:32 2025 年的新年愿望 相关链接: 《晚点对话李开复丨他第一个讲了出来,不再追求 AGI》(25.01) 《对话李开复:这次大模型创业,我十年都不会变现》(24.05) 登场人物: 嘉宾:李开复,零一万物创始人兼 CEO。 主播:程曼祺,《晚点 LatePost》科技组负责人。小红书 @曼祺_火柴Q 即刻 @曼祺_火柴Q 剪辑:甜食 ☆《晚点聊 LateTalk》建立「 播客听友群」啦!☆ 欢迎关注科技、商业大公司动态和创业创新的小伙伴进群交流,第一时间收听新节目。 这里有更多互动,更多话题讨论。欢迎贡献选题 & 推荐嘉宾。 请先添加「晚点」小助手的微信号,备注:“晚点聊”,我们邀请您入群。 关注公众号《晚点 LatePost》和《晚点对话》,阅读更多商业、科技文章
- 97: 中国产品如何从 0 到 1 搭海外品牌?| 对话国际品牌操盘手 Eric
中国产品出海正在进入一个新时代:从卷低价、卷规格,到建品牌,讲故事。泡泡玛特希望在全球讲的是 IP 界的唱片公司的故事;名创优品希望借助每个大火的 IP,让自己的产品提供更多功用性之外的价值;喜茶则继续用联名,在全球范围内扩大自己的品牌影响力。 以往中国商品靠精益生产、快速周转,赚的是薄利多销的钱,今天新一代工厂管理者接手后,他们希望能从头搭建品牌故事、建立品牌影响力,利润空间更高、更具品牌忠诚度的海外市场就是他们心中的应许之地。但如何在海外从 0 到 1 搭建起一个品牌? 我请来了一位国际日化集团的社交电商负责人 Eric,这一集团下不少化妆品品牌女生们都耳熟能详, Eric 过去 10 年都在集团内负责整个亚太区域的电商业务,做过运营、投放、数据分析,Eric 很清楚一个品牌如何从头搭建、长大。 过去一年他开始转向出海,负责东南亚、日本、美国三个市场的 TikTok 电商渠道,中间踩了不少坑,也积累了不少经验,在本期播客中,我们将能够听到他的真诚分享。 东南亚市场 06:54 在东南亚,如何从0到1搭建一个海外品牌? 23:08 在东南亚做了一年 TikTok 电商,我踩了哪些坑 31:53 东南亚几个电商渠道,如何分配预算? 39:26 东南亚绝对不会出现李佳琦,因为没人会那么努力 日本市场 49:02 一个商品详情页要改两周,日本电商市场太慢 53:36 面对低效,破局的点是找到搭配默契的中国人团队 北美市场 01:00:46 品牌要在 TikTok 北美做起来,可能会面临哪些挑战? 01:06:43 雅诗兰黛等全球知名品牌是怎么做 TikTok 的? 01:08:12 为什么美国的 TikTok 很难像中国的抖音一样快速成长起来? 01:14:03 外资进入中国,有什么经验可借鉴? 01:18:41 出海过来人想说,你得考虑这三个问题 剪辑:甜食 登场人物 Eric,知名国际日化集团全球社交电商负责人,即刻 ID:艾瑞克丁 Eric 陈晶 《晚点 LatePost》记者,关注出海(Wechat:tiema233) 封面图:Eric 从印尼飞往越南的路上
- 96: 和楼天城聊 Robotaxi:学习人类优秀司机,让我绝望
「没进展的 5 年,也是内部技术变革的 5 年。」 两年多前,我们在 Robotaxi(无人出租车)的信心冰点报道过小马智行。那时的标题是:“市场不相信自动驾驶了,但他们还信”。 转眼到 2024 年:百度萝卜快跑 4 月在武汉引起热潮,Waymo 无人车队 8 月在旧金山的日均总单量超过了当地出租车(未计算网约车);年底,又有文远知行、小马智行两家中国头部 Robotaxi 公司先后登录美股。 在特斯拉和 Waymo 的路线对比中,强弱之势也正微妙变化。10 月,马斯克的 Robotaxi 发布会后,Uber 股价大涨 10%;而 1 个月后,当 Waymo 传出进入迈阿密,Uber 股价则跳水 10%。 谁更有希望代表 L4 真的改变人类司机出行网络?华尔街在用钱表态。 这个时刻,我们再次访谈了刚刚完成 IPO 的小马智行 CTO 楼天城。 他完整描述了小马过去 5 年 L4 技术变革:从 Learning by Watching 到 Learning by Practicing。 前者是学习人类驾驶行为的模仿学习,是如今 L2+ 普遍选择的路;后者的关键则是构造一个训练车端模型的虚拟环境,让系统可以自己进化,楼天城称之为“世界模型”。 楼天城分享了与之相关的多个技术洞察: ·世界模型本质不是一个模型,世界模型是车端模型的 factory(工厂),自动驾驶技术的真正差别在于 factory 的精度,而非车载模型的能力。 ·Learning by Watching 最多是像人,但像人永远无法做到 L4。 ·越是优秀的人类司机,学起来越是反向优化。 ·MPI 为 1000 公里的产品不存在,因为它反人性。 过去 5 年,外界看不到 L4 公司的明显进展:MPCI(接管里程)仍在提升,但只要无人化车辆没有大量上路,人们就没有直观感受,技术指标只是冰冷的数字。 但在楼天城的叙述里,外界见不到进展的 5 年,也正是关术变革发生的关键时期。 这些变化,使 Robotaxi 今年得以启动百台至千台级别的规模化运营,也给行业带来了高开低走,又逐渐反弹的波折命运。这不仅考验从业者的理性技术判断,更考验感性的决心,和说服团队一起相信的能力。 “我一直说,大部分人不能坚持不是因为太苦,而是因为受到了诱惑。”楼天城说,过去 8 年,他没有遇到过能和自动驾驶相提并论的诱惑,大模型也不算。 时间线跳转: ·5 年前:瓶颈 →绝望→寻找新路 02:53 2019 年后,L4 的进展难再被感知,规模化无人运营带来了市场水温变化。 11:13 这 5 年:从 Learning by Watching 到 Learning by Practicing 12:30 前者是模仿学习,没法学习驾驶员怎么想 14:27 世界上不存在一个 MPI 为 1000 公里的 L2 产品,因为反人性 16:13 模仿学习的另一个问题是人的双标,AI 司机所以像人依然不满足需求。 19:07 学习优秀司机也不行,甚至是反优化 19:45 这本质是因为模仿学习是开环训练,“我绝望了,才发现闭环是出路” ·搭建“世界模型” 22:03 Learning by Practicing 的闭环训练,是强化学习思路 23:46 学了棋谱再强化(AlphaGo),甚至不如直接从 0 开始强化(AlphaZero) 24:28 感性上的挑战:之前的路线做了 3 年还不错,换路线后前两年追得痛苦 26:19 5 年前开始转向以生成数据为重,这也是世界模型的任务之一 30:36 在虚拟环境里学习,本质是“向未来的自己学习” 32:21 世界模型是车端模型的工厂,自动驾驶进化的关键是工厂的精度,而不是车端模型本身 34:43 Learning by Watching,数据和算力是关键;Learning by Practicing,世界模型的精度是关键 ·认为 L2 会覆盖 L4,是还没有越过分界点 35:03 没有谁做了错误选择,L2+和 L4的优化方向不同 36:18 L2 使用 Learning by Watching 没问题,也符合 L2+的规模效应特性 38:51 L2 不能覆盖 L4,L4 也不能取代 L2,真正越过分界点后会发现这是两件事 42:20 小马世界模型的构成:1.数据生成器 2.驾驶评估体系 3.高真实性的仿真 4.数据挖掘引擎 45:39 魔鬼在细节,世界模型的细粒度指标是核心竞争力 53:04 世界模型的终极状态:车不再因错误发生事故 54:48 千台 Robotaxi 开始有毛利,净利和扩张则是策略上的 trade off 56:15 不会因为它是特斯拉,Learning by Watching 就能 work 01:03:11 车辆运营维护与合作伙伴一起做;远程遥控人员的比例未来可到 1 比 30 ·大部分是因为结果的正确,倒推方法的正确 01:10:20 大部分人不能坚持,不是因为苦,而是因为受到了其它诱惑 01:11:08 大模型现在很 fancy,一旦走到应用阶段,会经历自动驾驶经历的所有事 01:11:35 MiniMax 的产品是 L4,CoPilot 是 L2 01:14:09 度过行业起伏:外界看不到进展时,内部也要有合理且可感的里程碑 01:17:30 越来越相信,世界是模拟的 01:19:40 大部分人是因为结果正确,倒推成功者方法正确,但正因如此,不该盲目套用别人的方法 01:24:00 过早追求商业化,和一定要追求最有价值的商业化,都是极端。“创业前我没想过二者的平衡,创业中我肯定偏执过。” 01:25:57 下一步的关键是合理成本下,扩大车队规模 相关链接: 《市场不相信自动驾驶了,但他们还信》 剪辑:甜食 登场人物: 楼天城,小马智行联合创始人兼 CTO。 程曼祺,《晚点 LatePost》科技报道负责人。
- 95: 工业设计师到底在干啥?
汉洋和工业设计师志斌一起聊了聊到底啥是工业设计?并且随机点评了一些当下比较火的产品。 本期节目我们聊到了: * 简单一句话 20 来个字概括工业设计 * 工业设计这门课本科都在学啥 * 哪个最不起眼的东西实际有很高的工业设计含金量? * 工业设计和其他设计的区别和联系 * 工业设计师是一个工业产品的产品经理么 * 工业设计在一个产品线中所处的环节是什么? * 工资最高和最少的工业设计师分别在设计什么(或者说在解决什么问题) * 比如说你看到一台新发布的手机,你会关注什么? * 顺着聊聊,如何看待 iPhone 的设计? * 不同产品之间你关注的设计点一样吗?比如车和手机 * 聊聊理想 Mega * 那些细节是你一看就难的,但普通人都感觉习以为常的? * 反过来呢?大家认为难但实际上很简单的呢? * 没做过工业生产的老板,会在设计上踩什么坑? * 我们拿到一台新设备,该怎么看他的设计好坏? 相关链接: 志斌的播客《荒野楼阁 WildloG》(苹果) 《荒野楼阁 WildloG》(小宇宙) 预言在应验:五年前所讨论的未来人机交互的新范式_6.ylo 志斌的 blog 柳宗悦 登场人物: 志斌:一个家里有动物园的设计师奶爸 汉洋:设计溜达动线中 后期:甜食 封面:志斌在拍照
- 硅谷线下活动:与《不在场》主播重轻和老朋友丰泽一起聊聊
具体信息可以点击这里查看。 发邮件到 why at gailiuzi.xyz 就可以。
- 93: 字节VS六小龙,大模型创业生存战 | 串台「十字路口Crossing」
「稿件操作幕后,文字之外的更多想法和碎碎念。」 本期的主播是曼祺,很高兴和「十字路口 Crossing」串台,一起来聊《晚点》11 月底发布的一篇文章《中国大模型生存战:巨头围剿,创业难熬》的操作故事和感受,这刚好也是一次大模型创业的年底“非系统”复盘。 这段时间,我感受了非常不同的 AI 面向:先是参加了十字路口和 Abotify 一起组织的一场 AI 创业和开发线下活动(1000 天后的 AI 世界),本来 150 人的活动,有 700 多人报名,最后我目测现场涌入了 200 多人;热火朝天和甚至“乱哄哄”的现场交流与碰撞,是如今的 AI 拼图之一。 而这前后,我们为准备大模型稿件做采访、数据整理和撰文时,又看到了拼图的另一面:字节等大公司来势汹汹,后来居上,它的大模型进展在 23 年下半年还被群嘲,如今已不可小觑——“中国的大象真的会跳舞”。最头部的一批创业公司,尤其是既做模型,又做应用的六小龙无不感受到这只“大象”的压力。 所以我们后来在年底的大模型创业生态稿件中,选择了这样一个主线:“巨头围剿,创业难熬”。本期就是和 「十字路口」一起聊聊这篇稿件的操作,以及更多报道之外的言外之意和“前排感受”。 「十字路口」的两位主播带来了和不同的视角:Koji (杨远骋),联合创办了街旁、新世相和躺岛,他自己现在也在做 AI 应用,是一位活跃的 AI 开发者,对各模型性能区别和 AI 应用的快速变化有一手观察;Ronghui,目前在一家专注科技投资的风险投资机构工作,之前是第一财经周刊驻硅谷的记者,她所在的机构也在积极投资 AI 项目。 时间线传送: Part 1 大模型创业变局:核心变量仍是技术进化的方向与速度 02:33 市场的核心分歧:技术进化的方向与速度? 04:35 if 进化快:也许有创业者能有一定的认知优势 & 模应一体也会更合理 08:16 if 进化慢:产品能力变得更重要 & 大模型头部公司融资不顺 10:00 神奇的 DeepSeek:不是大厂,但资源够多 11:55 不管进化快慢,开源对闭源都有压力 14:44 三种反馈:共鸣、中外关注差异、具体数据讨论 20:23 马云训话阿里投资部的段子背后 21:31 不是创业公司不顺利,是大厂衬托下显得不顺利 23:49 六小龙现状:Kimi 专注做 Kimi,零一不是没产品,智谱 AutoGLM 与手机合作 31:15 Kimi VS MiniMax:前者重注生产力,后者推出更多适应性产品;生产力是大公司的必争之地,MiniMax 星野、Talkie 在细分市场暂时比大厂产品更强 35:50 闫俊杰说追求 Intelligence with everyone;杨植麟说追求智能极限 44:34 大模型创业,一年花费到底多少?投资人的算法 VS OpenAI 花费 47:33 大模型创业公司不是面临一个挑战,而是一组纠缠的挑战 48:40 今日头条上线 1 年多时,就有 1000 万日活 Part 2 字节如何后来居上:招人才、定策略、建组织 52:13 字节在大模型上不如中国其它大公司,百度才是最早的 56:41 去年到今年,直接的变化:一号位亲自招人,确定自己做、不再对外投资,Flow 的成立 01:01:15 字节做 AI 的外部变量:海外的地缘压力 01:02:19 阿里的新战略:AI 驱动、公共云优先;未来的新看点:阿里云 VS 火山云 01:07:02 腾讯,可以后发制人 01:08:40 百度的组织张力,萝卜快跑反而成了百度今年的 AI 亮点 Part 3 应用在蓬勃生长,创业者没空悲观 01:11:45 十字路口xAbotify 线下活动,100 多名额,700 多人报名 01:12:44 超级个人+小团队的蓬勃发展 01:15:28 应用没有爆发?还是预期太高? 01:16:20 好用 AI 应用的例子:Recraft、Cursor 01:20:00 创始人没空悲观,他们一定在寻找出路 01:21:24 “战争不是由拼搏组成的,而是由等待和煎熬组成的。” 相关链接: 我们办了一场全程高能量的 AI 创业者聚会 中国大模型生存战:巨头围剿,创业难熬 大厂大模型:久违的一把手工程 晚点独家丨月之暗面探索 o1,跟字节抢来华为刘征瀛 晚点独家丨大模型六小龙第一起分拆:零一万物计划独立 AI 游戏公司 晚点独家丨月之暗面收缩出海,相关产品负责人离职创业 登场人物: Koji 街旁、新世相、躺岛联创,@即刻 杨远骋Koji Ronghui 美元 VC,前《一财》硅谷记者,@即刻 Ronghui 程曼祺 晚点科技报道负责人,@即刻:曼祺_火柴Q 剪辑:十字路口团队 播客封面:《星球大战外传:侠盗一号》 关注《晚点 LatePost》公众号,阅读更多商业、科技文章:
- 92: 每年聊 1000 个项目,我看到出海者们的局限和犹豫 | 对话云时资本彭创
和更多出海创业者、投资人交流后,我有个直接的感受,“不出海、就出局”这种言论是在给创业者们制造焦虑。 很多创始人没有足够认真地思考过,自己的产品是否适合卖到海外、努力投入几年后可能还不如做好国内市场、自己应该加强哪些方面的能力,以及,如果你还需要融资的话,投资人真正关心什么。 这期节目,我们邀请了云时资本创始人彭创,来聊聊从投资人视角看,什么样的出海项目更值得投资,出海创业者们身上有哪些优势和局限。 彭创在创立云时之前,是洪泰基金的管理合伙人、高瓴资本投资副总裁、高瓴旗下清流资本合伙人,投资过 51 信用卡、有赞等项目,现在云时主要看出海,覆盖材料/零部件、软件、智能硬件、自动化/装备、互联网五个方向。 创始人决定是否出海前,应该思考哪些问题?一起来听一听投资人视角的看法。 出海创业者们的优势、局限和纠结 00:01:44 以前投有赞、51 信用卡等互联网项目,我是如何从互联网到非洲,再到出海? 00:07:16 从无人问津到所有人都在谈论,投资人看出海的视角有什么变化? 00:11:41 从投资人视角看,中国出海创业者局限在哪里?怎么补足能力? 00:19:32 想要做品牌的出海创业者,应该向安克学习什么? 00:24:20 出海创业者们的犹豫、纠结,很大程度来自全球局势的不明朗 00:26:58 “不出海,就出局”是在制造焦虑,怎么判断自己的业务到底适不适合出海? 作为一家主要投出海的基金,如何构建自己的投资逻辑 00:36:54 投资人能投的出海方向,选择已经不多了 00:39:08 什么样的出海创业公司,投资人会更感兴趣? 00:49:10 从零到一,如何搭建起来一个双币基金? 00:51:29 募资越来越难了,但本质上是因为曾经的资源错配了 00:55:42 给还在一级市场,迷茫的年轻人们一些建议 登场人物: 彭创 云时资本合伙人 陈晶 《晚点 LatePost》记者,关注出海(Wechat:tiema233) 剪辑:甜食
- 91: 成庆:佛学不是精神的止痛药
「原子化的现代人个体,很难去体会他人的苦。导致佛教真正去强调助人利他的一面始终浮现不出来。」——成庆 佛学火了,但它为什么会火?本期节目来自于汉洋研究佛学与佛教后的一系列问题,他与上海大学历史系副教授成庆聊了聊佛学与佛教。成庆老师目前关注明清禅宗思想史,以及汉传佛教的现代化转型问题。同时他也在看理想 App 主持了《人生解忧:佛学入门 40 讲》并且基于该节目出版了新书《人生解忧》。 汉洋的问题很简单:佛学在今天多大程度上被当成了一种心灵疗愈的精神止痛药,成为了身心灵的一种?青年人在消费佛教,到底是在消费什么?学佛,到底要学什么? 佛教,是帮助我们成为更好的自己,还是消除对自己的执念?佛陀是已经觉悟的众生,众生是尚未觉悟的佛陀——今天我们还相信自己也可以取得和佛陀一样的知见吗? 本来自由人。 相关链接: 人生解忧:佛学入门40讲 成庆老师的新书《人生解忧》 永福普贤讲习社 新展|虚堂雨滴声:近代佛教的转型与重生 登场人物: 成庆:非典型大学老師,一切事物的好奇探索者 汉洋:大法应化,随缘盛衰。盛衰在迹,理恒湛然。 后期:甜食 封面:汉洋拍摄成庆老师于《虚堂雨滴声》展览
- 90: 当每个国家都想要自己的大模型?与云启陈昱聊主权 AI
「不安、野心、机会,与过度投资的风险。」 上周三,黄仁勋和孙正义,相拥于日本东京英伟达 AI 峰会(本期封面)。 这两人除了商业互吹和共叙往事,也提到了一个合作计划:软银正在使用英伟达的新一代 Blackwell GPU 平台,构建日本最强大的 AI 超级计算机。 差不多一周前,日本政府还承诺,未来十年会为日本半导体和 AI 行业,提供超过 650 亿美元的支持。 不光日本,从去年到今年,全球多个政府,包括欧盟、新加坡、沙特、印度、甚至肯尼亚都提出了数十亿美元到 1000 亿美元不等的 AI 投资计划。 他们指向同一个目标——“主权 AI”。 在今年 2 月的“世界政府峰会”上,黄仁勋如此描述主权 AI 的必要性。他说:“每个国家都要占有自己的智力生产,它包含了你的文化、社会智慧、常识和历史,因此你必须拿到和完善这些数据,并拥有自己的国家情报,你不能容许其他人这么做。” 这期节目,我们邀请了长期投资基础软件和 AI 的云启资本合伙人陈昱,和我们一起聊主权AI。 陈昱是约翰霍普金斯大学计算机硕士,芝加哥大学布斯商学院 MBA。与毛丞宇、黄榆镔一起成立云启资本之前,陈昱自己完整经历过创业到退出。 他也是 MiniMax、元戎启行、Zilliz 等知名 AI 公司的首轮投资人。 当每个国家都想有自己的大模型和 AI 基础设施,这带来了哪些机会,又可能有哪些潜在风险? 时间线传送: ·主权 AI,一个有需求的 to G 市场 02:47 国家想自己掌握 AI 基础设施:从中国到沙特到日本 05:35 英伟达 Q1 电话说,其主权 AI 相关收入今年会从 0 增长到 100 亿美元 07:05 为什么过去不讲“主权互联网”,现在讲“主权 AI”?——AI 有价值观,也直接关系生产力 09:03 即使没有地缘政治变化,主权 AI 的需求依然成立 ·全球 AI 基建潮的机会:芯片、算力中心与 Infra 09:53 直接的机会在算力层,中国公司缺产能 10:54 AI Infra 也是机会,云启投资了壁仞联创徐凌杰的新项目 13:36 每个国家都想要大模型,肯尼亚都在做斯瓦西里语大模型 14:47 中国模型的人才出海也是机会 16:03 李开复在中东人脉深;不少海外政府也会和阿里、字节等大厂合作 18:11 中国芯片层出海暂时没条件,但未来可能对外输出 22:06 智算基建也有技术机会,如液冷和互联互通 Infra 23:38 支持民间公司 or 政府主导?各国政府有不同选择 25:05 到 2024 年 5 月底,中国大陆建成/在建智算中心已有 280 多座 26:27 大厦里的智算中心,就在晚点三里屯办公室旁 26:49 地方政府招商需求带来智算中心建设竞争 29:56 GPU 更新很快,建设可能跟不上换代 30:26 283 个项目,4300 亿+投资额,36.93 万 P 算力,够训好多大模型 ·更好的政务服务?更无处不在的管理? 32:50 多少政府能实现目标? 33:59 政府怎么算收益? 35:57 重点 to G 的应用公司也在拥抱大模型 36:18 讯飞用不了英伟达,和华为昇腾有更好适配 37:42 “如果连 7 年耐心都没有,那就不应该投 AI” 38:17 主权 AI 打开新蛋糕,也带来新竞争,英伟达市占率已到顶点 41:54 国内 to G 账期长是个突出问题 44:45 普通人如何被影响?——更好的政务服务 or 更无处不在的管理 相关链接: 主权AI,对于英伟达成立吗? 283座智算中心布局及东西部差异分析 登场人物: 陈昱 云启资本合伙人 程曼祺 《晚点 LatePost》科技报道负责人(即刻:曼祺 _ 火柴Q) 剪辑:甜食
- 89: 当技术遇上艺术:与 NVIDIA 和新片场聊 AI 如何重塑创作
移动互联网降低分享门槛,生成式 AI 降低创作门槛。 本期《晚点聊》,关注当技术遇上艺术,聊一聊计算机技术和正蓬勃发展的 AI 技术,如何与 M&E,也就是 Media and Entertainment 媒体娱乐产业相互影响、相互塑造。 围绕这个话题,我们邀请了两位嘉宾一起对谈:一位是 NVIDIA 中国区高级技术市场经理施澄秋(Searching),另一位是新片场的董事长兼 CEO 尹兴良(Ethan)。 他们刚好站在技术塑造内容这个链条的两头:NVIDIA 是人工智能计算领导者,同时 NVIDIA 也会开发大量的软件去帮整个生态更好的使用 GPU。NVIDIA 起家就是依靠计算机图形技术,最初也主要是用在游戏和影视行业。 成立于 2012 年的新片场,则是中国最大的高质量短片和视频素材分享平台,此后也进入制片业务,制作了大热 IP 剧集《鬼吹灯》(怒晴湘西、精绝古城、南海归墟等)系列。 内容创作或者说讲故事,是人类文明最早的活动之一。在 AI 技术之前,这个行业已是一个有长链条的技术工业体系。本期节目中,我们回顾了 AI 之前,计算机图形等技术对内容制作的影响与渗透,进一步展开了生成式 AI 浪潮带来的新变化。 如果说移动互联网大大降低了分享内容的门槛,生成式 AI 的发展则将进一步缩短从创意到表达的距离,让更多人有表达自己的方便工具,未来还可能进一步衍生出新的社区与平台。 影视和内容行业是一个万亿级的全球大市场,AI 带来的新一轮变化才刚开始。 时间线传送: · AI 之前,影视内容工业已高度技术化 02:07 《南海归墟》怎么制作?重特效剧集的基本生产流程 03:45 从前期概念图到特效拍摄、后期制作,计算机技术已在影视多环节降本增效 04:57 LED 拍摄从昂贵到普及,新版《狮子王》重映,GPU 让光影毛发的更精细渲染成为可能 11:16 从千禧年到现在:拍摄、制作的技术变革 · 移动互联网降低了分享门槛,生成式 AI 将降低创作门槛 22:04 打开视频软件,也许你已经看到过大量 AI 生产的短剧海报 28:09 一个实用案例:NVIDIA Omniverse,数字资产在线协作平台如何提高影视拍摄的效率 32:41 制作方视角:不怕技术新,怕找不到熟练使用的人 35:51 生成式对抗网络(GAN)、NeRF (神经辐射场)、ACE 数字人,前沿技术渗透影视行业 39:48 2021 年 NVIDIA GTC 大会中,黄仁勋“数字分身”的台前幕后 48:45 新片场与国内 AI 厂商有多元合作:即提供训练素材,也在测试、使用各家的模型 50:40 渲染器领域的国产替代机会,D5 已被很多中国团队使用 52:55 Maxine 软件,在网络会议场景实现的眼神聚焦和画面校准功能,使得远程交流更加自然流畅 54:22 大型网络会议、户外直播等复杂场景如何实现高质量流程 57:10 NVIDIA 有两个不直接“带货”,却被黄仁勋视为核心的团队:“开发者关系”和“开发者技术” 59:29 Ethan 的 NVIDIA 总部参访感受 · 工具与灵魂:“内心的想法是一切的根源” 01:02:34 AI 的魅力在于降低创作门槛,普通人也能通过科技工具更好表达创意 01:05:25 NVIDIA Omniverse 的创作者比赛,已涌现出许多优秀的非专业创作者 01:06:21 AI 创作需要数字围栏,人类的意图表达更为重要 01:07:46 教育端已出现学科调整,AI 会催生更多新岗位 01:08:48 普通人拥抱 AI 创作,创作热情和想法仍然是最重要的 01:10:06 AI 可以打动人类,但是不会被打动,人类情感仍然是推动内容创作的本源动力 相关链接: 一位 AI 画家的成长历程丨TECH TUESDAY 争夺 AI 入场券:中国大公司竞逐 GPU 附录:本期播客里提及的技术与产品等 M&E Media and Entertainment 的缩写,指的是媒体与娱乐产业。 特效回插 在影视剧的生产链条中,特效镜头常常由协力公司单独制作,后期制作阶段会将这些特效镜头插入到影片中相应的位置。 CG 计算机图形学(Computer Graphics,简称CG)是一种使用数学算法将二维或三维图形转化为计算机显示器的栅格形式的科学。 Diffusion 模型 这是一种生成式模型,主要用于生成高质量的图像、文本和其他类型的数据。 B-roll 是指在影视制作中用来补充主镜头(A-roll)的辅助视频或图像素材。通常,A-roll 包含主要的叙事内容,比如采访、对话等直接涉及故事主线的画面。而 B-roll 则是用来丰富视觉效果、提供背景信息或增强情感氛围的额外镜头。 NVIDIA Omniverse™ 是一个提供 API、SDK 和服务的平台。借助此平台,开发者可以轻松地将通用场景描述 (OpenUSD)和 RTX 渲染技术集成到现有软件工具和仿真工作流中,以构建 AI 系统。 NVIDIA ACE 即 Avatar Cloud Engine,是一套可帮助开发者利用生成式 AI 创建栩栩如生的虚拟数字人物的技术。 SIGGRAPH 是由 ACM SIGGRAPH(美国计算机协会计算机图形专业组)组织的计算机图形学顶级年度会议。 RAG 即检索增强生成(Retrieval-augmented Generation),简称 RAG。检索增强生成是一种使用从外部来源获取的事实,来提高生成式 AI 模型准确性和可靠性的技术。 登场人物: 施澄秋 Searching,NVIDIA 中国区高级技术市场经理 尹兴良 Ethan,新片场的董事长兼 CEO 程曼祺,《晚点 LatePost》科技报道负责人(即刻:曼祺_火柴Q) 剪辑:阿鲸Hval 封面:NVIDIA 创始人兼CEO黄仁勋的“数字分身”Toy Jensen。现在,新的生成式 AI 技术可以让数字人的生成过程更简单、低成本、高效。 图片来源:NVIDIA
- 88: SpaceX 星舰第五飞:“即便成功,也没想到是如此完美的成功”
“为什么要太空旅行?” “因为很酷呀!” 由马斯克创立的 SpaceX 在前 10 月 13 日完成了星舰(Starship)的第五次试验发射。马上又会在 11 月 18 日进行第六飞。 我们邀请了中国某家商业航天公司的前总体设计师陈亮,来与我们一起聊一聊取得重大进展的“星舰第五飞”。陈亮是北京航空航天大学航空宇航推进理论与工程博士,主要研究液体火箭动力系统的流动传热问题,曾参与多项新型飞行器热防护技术攻关和相关国家级预研项目,曾任可重复使用商业运载火箭总体副总师。 (图片来源:BBC) 我们也会就此展开 SpaceX 的研发逻辑,它作为商业公司给航天领域带来的变化,以及中国近年来商业航天领域的一些实践。 陈亮提到,他和很多同行其实没有预料到,星舰这次正式回收 Super heavy ,能如此完美地成功,如此干脆利落,好比在 100 公里时速下,精准倒车入库。Super heavy 就是星舰的推进器部分,星舰第五次实验发射的最大进展,就是成功地用像筷子一样的发射架塔臂稳稳夹住了掉头回到地面的 Super heavy 推进器。 星舰的全部模块可回收,意味着将进一步大幅降低发射成本,包括制造成本和发射时间成本。 低成本,也是 SpaceX 高频发射、快速迭代的前提。低成本和高频次相辅相成,打破了航天业过去奉行的“像飞行那样去测试,像测试那样去飞行的原则”。 SpaceX 的逻辑不一定谁都合适模仿,但这个搅局者已带来实实在在的改变。 时间线传送: ·星舰第五次发射: “即便成功,也没想到是如此完美的成功” 03:02 星舰的整体任务要求:一子级(推进器 Superheavy)回收到发射场,二子级(Starship)部分海上溅落 04:14 一般火箭的组成;星舰其实已超出传统火箭的范畴:介于火箭和航天飞机之间 06:32 火箭从准备到点火、发射、着落的几道关卡 09:06 看直播:超出预料;“即便成功,也没想到是以这种方式成功” 12:08 Starship 的软着陆:第四次跌宕起伏,第五次热防护做得更好 15:18 SpaceX 的逻辑:低成本+高频次发射=快速迭代;传统航天业则是:像飞行一样测试,像测试一样飞行 17:42 不建议初创公司模仿 SpaceX,猎鹰的失败当年也差点拖垮公司 19:56 蓝色起源的标志是乌龟,它相信快就是慢 21:40 NASA 新火箭项目 SLS,从项目上不成功,但它是满足美国载人登月时间表的唯一火箭 24:15 马斯克也许很疯狂,但 Space Age 时更疯狂:二战末期人类还开着螺旋桨飞机开战,69 年就登上了月球 27:58 科学狂人的激进:FAA(联邦航空管理局)一度推迟星舰发射,马斯克试图在特朗普上台后主持技术发展提效部门 32:07 在 SpaceX 做研发,得文武双全、不恐高 ·SpaceX 的航天矩阵:猎鹰、星舰、龙飞船、星链 33:00 猎鹰+龙飞船的组合:为空间站送货、送人 34:20 美国一度不能送人到空间站,要靠俄罗斯 35:08 美国两位宇航员仍滞留空间站;SpaceX 没去接,因为 NASA 没钱接 36:30 星舰和猎鹰的区别:星舰是为了去火星;目前方案需要在近地轨道 5 次加注燃料 38:20 火星不一定有经济价值,但太空旅行很酷 39:33 人类去火星,马斯克说 5 年,悲观看 10 年,NASA 的设想是 2050 年 41:46 星舰降成本的法宝:回收+使用民用部件+培养多面手 45:40 SpaceX 一个结构工程师,可以既做火箭结构也做卫星结构 47:51 全球火箭发射竞争格局:中美最强,欧洲最近扶持力度增大 ·中国的商业航天实践 50:51 2010 年到 2020 年,中国航天陆续启动重要项目 51:52 北航的“宇航学院”每年招生在 150-160 左右,近年 60%-70% 毕业生进入航天业 53:03 中国空间站发射、嫦娥五号探月工程、天问火星探测器,近年中国航天成果密集 55:18 商业航天公司能让个人更快速、全面成长,但整体人力资源有限 58:30 中国商业航天和 SpaceX 的差距——中国公司取得 Milestone 的时间更短;政策支持+航天基础+人才储备是只能怪过的优势 01:00:54 但 SpaceX 也在指数级发展,星舰出世开启新一轮追赶 01:01:41 从 SpaceX 身上学到的:回收模式+工程实现的启发 01:02:02 SpaceX 并未公开任何图纸,它的开放在于不会追究学他的人 01:03:09 从 SpaceX 获得启发的例子--猎鹰回收时的辅助支撑腿 01:05:12 中国商业航天发展需要的更多支持——资金+更多容忍失败;国内管理部门现在已经有很多支持 01:07:40 平民进入太空会成为趋势 相关链接: 星舰成功发射,SpaceX 如何在美国打败航天旧体系 登场人物: 陈亮,中国商业航天公司前总体设计师 程曼祺,晚点 LatePost 科技报道负责人(即刻:曼祺_火柴Q) 剪辑:甜食
- 87: 家里又多了个“怪东西”!与云鲸聊新消费电子品的诞生
扫帚、吸尘器、扫地机器人,为什么还不够? 近年来,消费电子市场不断出现一些新品类,骨传导耳机、洗地机、vlog 相机、智能眼镜等等,这些新品开始在市场上找到了自己的位置,也带动消费电子市场复苏。 每年都会有新品出现,但最终能被市场接受的不多。一个新的消费电子产品品类是如何出现的?它要满足哪些条件才能在市场上立足? 本期《晚点聊 LateTalk》由云鲸智能赞助,我们邀请了云鲸洗地机产品线负责人庄彬来分享一款新消费电子品从 0 到 1 的诞生过程。 庄彬是消费电子行业资深从业者,曾领导扫地机器人、智能洗地机、消费无人机、云台、激光雷达等多款、多品类的产品研发工作。2021 年加入云鲸,孵化了云鲸洗地机品类线。2023 年 5 月,云鲸正式发布第一代洗地机 S1,今年 9 月又正式发布第二代洗地机 S2 Island 光辉版。在整个中国洗地机市场,云鲸今年 9 月的市占率首次跻身前三。 洗地机在吸尘器、传统清洁工具和扫地机器人的夹缝里生长,它的市场规模从 2019 年的 0.9 亿快速增长到了 2022 年的 100 亿。 我们与庄彬聊了他近几年印象最深的消费电子新品,为什么行业不断有新的消费电子产品出现,他们满足了怎样的需求,一家消费电子公司是如何调研需求、拆解需求、立项并把产品做出来,以及云鲸的产品理念是如何在洗地机这款产品上落地的。 消费电子行业一直以来最核心的理念就是 PMF 产品与市场的匹配,云鲸作为一家年轻的公司,成立几年时间就就切入扫地机器人主流市场。他们的经历与思考对于行业可能是一个参考。 时间线传送: ·新的消费电子品类如何产生 01:48 印象最深的几款新的消费电子品类 03:58 消费级无人机为什么能成功 07:01 成功的消费电子品类满足什么条件 07:49 不成功的案例,创新没有匹配需求 ·调研→立项→研发全流程 09:45 立项前最重要的几个问题 11:32 产品经理如何分辨真伪需求,如何给需求的重要性排序 13:12 要去挖掘用户表面需求背后真正的底层需求是什么 15:23 云鲸怎么解决洗地机毛发缠绕的问题 ·洗地机为什么会出现,解决了什么需求 18:17 洗地机是一个舶来品,最早是清洁海外用户的毛毯地面 20:56 疫情期间智能清洁产品火爆 23:44 洗地机是取代吸尘器,和扫地机器人不冲突 29:00 云鲸为什么做洗地机比较晚 ·个人经历与转型,从研发转型产品的经历与思考 32:51 为什么从研发转型为产品经理 35:52 最初怎样规划这款新的洗地机产品 ·清洁产品的未来 45:27 智能清洁产品共同面对的问题 47:43 最终会有一个终极的清洁产品出现,类似通用机器人 51:59 给产品新人的三点建议 相关链接: 新新访谈|云鲸张峻彬:只有创始人走出低谷,公司才能走出来 本期人物: 庄彬,云鲸洗地机产品线负责人 张家豪,晚点科技报道作者,即刻:Erlade 剪辑: 甜食
- 86: We, Robot-2,清华叉院/星海图许华哲看“Optimus”的门道
“人类最大的科学幻想之一,怎么一点点变得现实。” 今天的节目还是和特斯拉近期的 We,Robot 发布会有关,主角从与侯晓迪那期(见《晚点聊》ep84)聊的自动驾驶来到另一个全场焦点:特斯拉人形机器人 Optimus。 我们邀请了清华大学交叉信息研究院助理教授、同时是清华叉院具身智能实验室负责人许华哲来与我们分享他的观察和实践。去年开始,许华哲也参与创立了一家具身通用机器人公司——星海图。 许华哲本科毕业于清华大学电子工程系,在伯克利 AI Research Lab(BAIR)获得博士学位,后在斯坦福做博士后,2022 年回国加入清华大学交叉信息学院。博一做过自动驾驶后,他在博二开始关注机器人领域,伯克利也是较早尝试把强化学习和机器人结合的重镇之一。 这期节目里,我们从 We,Robot 发布会出发,解释了有争议的“遥操”到底是什么,现在有什么用;许华哲也详细介绍了这次具身智能变革的一些关键技术推动因素,如强化学习、模仿学习、多模态大模型、世界模型等等;他还分享了 BAIR 的教授与博士生的工作方式。 通用智能机器人是一个交叉学科,也是人类最大的科学幻想之一。AI 知名学者 Marvin Minskey(马文·明斯基)曾预测, 3-8 年后,我们就会看到通用智能体,不过他说这话时是 1970 年。新一轮 AI 热潮为何会不同?最前线的人提供了他们看到的可能。 时间线传送: ·许华哲的求学经历 01:04 从清华电子系到伯克利 AI Research 博士,再到斯坦福博后 02:10 三在多伦多大学交换,机缘巧合下开始接触 AI 研究。 ·WeRobot 上的 Optimus,到底怎么理解遥操? 04:50 很马斯克风格的发布会 05:40 丝滑遥操作也有实用价值:远程劳动力转移;同时能帮助获得更多数据,使系统进化。 06:46 判断机器人好不好的两个小 trick:机器人走路时,周围人越少越好;机器人操作使,周围人离机器人越近越好 07:51 遥操目前有三种常见方式:从视频映射、人带着 VR 设备遥操、用与机器人同构的专用遥操设备遥操,斯坦福 Aloha 就使用了第三种 10:01 从遥操到机器人自己动需要:更多的数据,更好的模型 12:47 马斯克拉高大众对机器人的期待,整体是好事,但专业人士也许有时生气——2017 年的一个活动中,马斯克大谈明年实现自动驾驶,Andrej Karpathy(特斯拉自动驾驶前负责人,后回到 OpenAI,今年自己创业了)“脸都绿了” ·通用具身机器人照进现实,变化并不始于 Optimus -强化学习、模仿学习和多模态大模型 14:56 伯克利 AI Research:较早关注强化学习;这里鼓励一起合作,不同老师和博士间自由组合,很适合机器人交叉领域 20:28 斯坦福、伯克利、MIT 机器人谁最强?美国高校的人才的轮动机制 21:41 一个标志性工作:ETH(苏黎世联邦理工)让机器狗在仿真环境里学会爬山,这是是强化学习在机器人中的应用 23:37 许华哲自己的项目:机器狗学会在软垫上走,通过改进一个强化学习算法,让机器人不是在仿真里学,是在真实环境里学 25:20 算法和模型架构是两个概念,同一个算法可用不同架构的神经网络实现;强化学习两个最典型的算法范式:基于值的学习(Q学习)和基于策略的学习。 28:51 接下来谁能做出非常有效果的“具身大模型”,会是一个进展 29:23 除了强化学习,其它重要进展:模仿学习、多模态大模型 & 三者的不同作用 32:54 目前具身智能公司,自己做强化学习、模仿学习多,多模态大模型一般使用外部的,如 GPT 等。 -世界模型 34:11 目前是个笼统概念——根据目前状态能推断未来状态,都可以是世界模型 35:24 为什么 Sora 不是世界模型,而 YX (也是一个视频模型)是一个世界模型? 36:52 机器人包饺子的例子:当时用到的“世界模型”就是一个神经网络,不过是一个很局限的版本。 38:04 实现通用机器人,世界模型一定是组成部分,但其实现在大家并不完全知道怎么做世界模型;目前 AI 界提出的几种主要思路 -触觉(感知里被忽略的一个部分) 39:14 触觉是个被忽略的模态,而人最大的器官是皮肤;触觉缺失的患者很难抓东西 41:00 触觉和力控传感的区别 -本体 42:29 机器人本体形态目前五花八门,为什么星海图觉得当前操作(双臂)更重要 45:28 关于灵巧手:在清华有各种尝试,但并不适合现在就放在公司里做,要做好灵巧手,难度不亚于做好一个完整人形机器人 47:53 目前星海图“力出一孔”要做好的事:移动操作的本体、遥操作和智能。 ·从机器人的现在到未来 48:19 明斯基 1970 年的乐观,3-8 年后就会有通用智能体 49:26 清华姚班本科生关于 AGI 的预期小调查:今年比去年悲观 52:03 从现在到未来的瓶颈:数据;目前行业里还没有清晰的数据采集成本,因为采集方法也没有定型;星海图自己获得数据的 3 种方式 55:30 未来机器人上的模型,是一个端到端大模型,还是在不同层次用不同模型来组合?——许华哲相信类似 VLA 的端到端模型是未来趋势,但不一定最适合现在来落地。 58:14 目前大模型范式有缺陷,但可以一边先用,一边改进 59:07 UBI(无条件免费发钱)计划不一定能解决未来的社会危机 59:51 要警惕人类不经意间丧失权利,你有可能失去“在健康日吃炸鸡的权利” 01:02:17 一致性与对齐:机器以会实现我们设定的目标,但可能以我们想不到的方式,使我们付出想不到的代价 相关链接: 特斯拉 Optimus 机器人进展:已经生产数百台、还拧不好螺丝 到底什么时候AI才能帮我把麻烦事都做了啊啊啊啊?|许华哲 一席第1037位讲者 晚点聊 LateTalk-84:与侯晓迪聊特斯拉 We,Robot:烟雾与现实 附录:播客中提及的一些 AI 领域人物(按提及顺序) Andrej Karpathy,AI 研究者,曾任特斯拉自动驾驶负责人,今年创立了人工智能教育公司 Eureka Labs。 Trevor Darrell,Berkely AI Research Lab(以下简称 BAIR)教授,Caffee 的搭建者之一,许华哲的博导。 Sergey Levine,BAIR 副教授兼谷歌 DeepMind 研究员,今年参与创立研发机器人大脑的 PI。 Pieter Abbeel,BAIR 教授,智能协作机器人 Covariant 的创始人之一,2021 年 ACM 计算奖获得者,Amazon 后收购了 Covariant 的部分团队。 Anca Dragan,BAIR 副教授,运营 Interact 实验室。 Jitendra Malik,BAIR 教授,其团队在机器人视觉触觉结合等方面有突破。 Alexei Efros,BAIR 教授,计算机视觉专家,在图像合成、风格迁移等方面成果突出。 Chelsea Finn,斯坦福助理教授,研究智能体学习交互能力,曾在谷歌大脑工作。 Yann LeCun,图灵奖获得者,Meta FAIR(the Foudamental AI Research)负责人。 David Ha,AI 研究者,2018 年 3 月曾发布论文“World Models” Marvin Minskey,麻省理工教授,“人工智能之父”,推动 AI 早期发展的重要学者。 Dieter Fox,华盛顿大学教授,研究机器人感知规划学习等,对复杂环境应用有贡献。 登场人物: 许华哲,星海图联创、清华交叉信息学院助理教授 程曼祺,晚点科技报道负责人。即刻:程曼祺_火柴Q 剪辑:甜食 封面:Screenshot from Robert Scoble on X
- 85: 国家从无到有,拢共分几步?|工业化之路 01
丰泽汉洋空口从零模拟国家工业化:泽洋波利斯的崛起之路!开局 5000 万人口、资源有限、生育率极高,该如何夺取天下? 建议点赞收藏转发,以后你和朋友穿越到异世界建国的时候能用的上。 晚点聊新系列,工业化之路第一期节目。 相关资料: 想要发电,要先有电:一个总工在中国和非洲修水电站的故事 国在水电站方面基本上处于天顶星级别存在:和非洲回来的曹工唠唠 人民币上的水电站,为啥炸了重建?清北打灰佬,探访「水电站之母」【吉林·丰满大坝】 【番外】没人能在钢铁厂想小事儿:伯利恒 登场人物: 丰泽:在非洲打了三年灰的博士 汉洋:万古长风,一朝风月 制作:甜食 封面:汉洋拍摄于七台河
- 84: 与侯晓迪聊特斯拉 We,Robot:烟雾与现实
「一切以 CPM(每英里综合运营成本)为纲。」 本期《晚点聊 LateTalk》,我们邀请无人驾驶资深从业者侯晓迪探讨刚刚结束的特斯拉无人出租车(Robotaxi)发布会 We,Robot。 侯晓迪本科毕业于上海交通大学,后在加州理工大学获博士学位。他曾是自动驾驶第一股,图森未来的联合创始人,历任 CTO、CEO 和董事长。去年他开始了新创业,成立 Bot Auto,继续做自动驾驶。 马斯克式爽文的惯常叙事是:提出一个不切实际的想法→给出一个激进时间表→苦苦挣扎、多次延迟、陷入绝望→最后绝地反击。 无人驾驶也不例外,2016 年至今,特斯拉已数次跳票承诺。但今年初开始,特斯拉的一系列进展让外界期待大增,尤其是 FSDv12 的惊艳表现。 但 10 月 10 日的这场发布会,信息过于模糊,它短期带来的更多是失望:发布会第二天,特斯拉股价下跌约 9%,Uber 则大涨 10%。 侯晓迪说,这次发布会使他略感意外之处是,在全无人驾驶领域,部分人对马斯克的宗教式狂热正在减弱。 侯晓迪分享的核心观点是:L4 自动驾驶现在更多是一个多个问题组合而成的复杂系统工程,目前到了以 CPM(Cost Per Mile),即“每英里综合运营成本”为指引的阶段。 各公司的关键赛点,是怎么在保证安全的情况下降低 CPM,从而能比现有运力网络更有优势。马斯克在发布会中也提到了 CPM 这一指标,不过侯晓迪非常不同意马斯克说的具体数字。 我们也与侯晓迪聊了他对自动驾驶行业近年的一些热点技术,如「端到端」和「世界模型」的理解和看法;以及他在离开图森之后,再次创业做 L4 自动驾驶的新认知和选择。 时间线跳转: ·We,Robot 发布,马斯克的现实扭曲力在减弱 04:07 人们对 Musk 的宗教式狂热在消退 07:10 高科技发展中始终有两面,技术客观规律 VS 公众意志与期待,特斯拉擅长拉满期待 10:29 0.2 美元每英里运营成本为何是胡说,一个简单的计算题 12:13 CPM(每英里成本)应该是一个统一标准,就像会计准则 16:31 运营的魔鬼在细节,一个例子:胎压检测 19:26 Cruise CEO 发布会前给出 15 条要点,马斯克则都没讲 22:40 技术发展和 CPM 下降并不矛盾 26:14 机器人的遥操:从大众到业内人士的 3 层观点 29:07 Robotaxi 领域闯入新玩家的影响——也许没那么大影响 ·认可端到端大方向,不认可技术被宗教化 30:55 FSD 休斯顿体验,运气好 10 分钟接管一次 31:10 端到端,是一种技术的“意识形态化” 34:50 Scaling Laws 原初论文里有诸多限定条件,愚者的问题是无节制地外推 38:31 端到端的新网络架构有优点,也增加了限制因素,如不可解释→难以合规 41:41 车主的车撞死了人,算谁的?——Cybercab 量产前,用 Model 3、Y 接单的“Airbnb”模式也难以实现 42:29 ”世界模型“,学术上的更早源头是内蕴表征 47:48 世界模型要解决的问题:包含各种物理规律,因而是一个做具体任务的宝箱 49:56 L5 是永远达不到的地平线,L4 是产品,产品就谈挣钱,不寒颤。 51:50 赚钱路上的眼见瓶颈:远程遥控 1:3 怎么走到 1:10 ·从硅谷到休斯顿,远离 Breaking News Overflow,靠近产品和运营 53:21 Bot Auto 的 2000 万美元融资,什么人还愿意投入自动驾驶? 57:17 回顾上段创业:不要过早扩张,重要的不是收入,而是利润 01:01:32 休斯顿 VS 硅谷,离投资人和喧嚣远了,离产品近了 01:06:46 Bot Auto 年内小计划 相关链接: 《马斯克 19 分钟发布会,PPT 是一回事,现实是另一回事》 15 key things to look for from new robotaxi players(Kyle Vogt) (Robotaxi 新玩家需要注意的 15 个关键点——Cruise CEO Kyle Vogt) 登场人物: 侯晓迪,Bot Auto 创始人 & CEO。 程曼祺,晚点科技报道负责人。即刻:程曼祺_火柴Q 剪辑:甜食